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Abstract

The main idea of this manuscript consists on
applying signal processing methods along with
statistical approaches to achieve the characteriza-
tion of a complex and hostile environment such as
the oceanic underwater environment. In order to
study, characterize (i.e. the measurement of the
pressure, the salinity, the temperature, etc.) and
extract the topographical features (depth, etc),
Ocean acoustic tomography methods are widely
used.

For many reasons, Passive ocean Acoustic
Tomography (PAT) configuration becomes more
attractive than the classic active one. However the
new passive configuration is more challenging. In
our project, some of the facing problems have been
addressed. In this manuscript, major problems are
described and a new separation scheme based on
modified ICA algorithms is proposed. Finally, our
experiment results corroborate the effectiveness of
our proposed approach.

KEY WORD: Underwater acoustic applications,
passive acoustic tomography, second order statistics
in frequency domain, multipath channel, sparseness
or non-stationary signals.

1 Introduction

It is well known that the oceans’ ecosystem has a
major impact on the global earth’s ecosystem. In
order to monitoring the marine ecosystem, many
approaches have been previously proposed. The
main common factor of these methods consists on
the direct measurement of various environmental
parameters (i.e. salinity, temperature, pressure,
etc) using appropriate sensors. These approaches
generally suffer from high cost and fail to provide
adequate large scale monitoring. To solve these

problems, researchers from all around the world
are using underwater acoustic devices (as sonar)
and technology along with powerful signal pro-
cessing algorithms (classic and adaptive filtering,
identification, clustering, etc.). Therefore, Acoustic
Oceanic Tomography are widely used in many
civil or military applications such as: Mapping
underwater surfaces, oceanographical, meteorologi-
cal applications (to measure the temperature, the
salinity, the motion and the depth of the water), to
improve sonar technology, so on. Many algorithms
have been developed to deal with active acoustic
tomography, [17, 16].

Active tomography strongly relies on the possi-
bility to emit powerful acoustic signals in the ocean.
Major problems can arise. Powerful emissions need
heavy power supply which can drastically limit the
efficiency of autonomous monitoring systems. It
is well known that high power emission can cause
drastic damages on marine mammals and disturb
their behavior. Finally in a warfare context,
some constraints about covertness may exit in the
acoustic process. To overcome these problems, the
concept of Passive Acoustic Tomography (PAT)
has recently emerged in the community [21].

The main drawbacks of PAT are the lack of
information about the number, the positions and
the natures of the emitted signals. With more than
two sources many actual tomography algorithms
can’t give satisfactory results [15].

This paper deals with the application of ICA al-
gorithms in PAT in order to improve and simplified
the PAT algorithms as well as the processing of the
received signals.
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2 Assumptions and Back-

ground

2.1 Underwater Acoustic Channel

According to [1], the sound speed C (m/s) in the
ocean is an increasing function of temperature T
(◦c), salinity S (in Parts Per Thousand, ppt), and
pressure, the latter being a function of depth D (in
meters) :

C = 1449 + 4.6T − 0.05T 2 + 2.3 × 10−4T 3

+1.34(S − 35) + 0.02D + 1.6 × 10−7D2

−0.01T (S − 35) − 7 × 10−13TD3

The above equation is empirical relationship which
is satisfied when 0 ≤ T ≤ 30, 30 ≤ S ≤ 40, and
D ≤ 8000. Since most of these later parameters
depend on time as well as geographic positions and
hydrographic properties of the sea, we consider
a simplified model where the sound propagation
speed is assumed to be quite constant. This
assumption can be satisfied in some underwater
channels [5] (where the depth is about few hundred
meters 200 to 300, the emitters and the receivers
are not so close to the water surface nor to the
bottom, and the distances among emitters and
receiver are less than 2 to 3Km).

The reflected acoustic waves on the bottom of the
propagation channel depend on many parameters
such as the constitution and the geometrical prop-
erties of the bottom [4]. In our model a standard
sand bottom has been considered and random
coefficients have been added to characterize the
other unknown parameters. The reflected acoustic
waves on the top of the propagation channel, i.e.
the water surface, depend also on many parameters
such as the wind, the wave frequency as well
as the swell properties [4]. For this reason, the
water surface can’t be considered as a flat surface.
Therefore the direction of the reflected acoustic
wave is dispersed in the space. However in average
term, the reflected acoustic wave can be considered
as obtained by a flat surface with some absorption
coefficients [5]. In our model a flat surface has
been considered and random coefficients have been
added to characterize other unknown parameters.

Finally, an acoustic propagation model proposed
by Schulkin [20] is considered. According to that
model, the received signal should be multiplied by
a corrective coefficient p:

p =
1

r
exp

(

−
αr

20

)

(1)

here r is the propagation distance and α stands for
the Rayleigh absorption coefficient which it can be

approximated by the following equation, [20]:

α = (1− 6.54 ∗ 10−4 ∗Pw)

(

SAfT f2

f2 + f2

T

+
Bf2

fT

)

(2)

where fT = 21.9∗10(6− 1520
T+273) (in kHz), T is the wa-

ter temperature (◦C), S = 3.5% is the water salinity
(in the ocean S ≈ 35g/l), Pw is the water pressure
(in kg/m2), A = 2.34 ∗ 10−6 and B = 3.38 ∗ 10−6.
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Figure 1: The obtained simulated acoustic channel
parameters depend mainly on the channel depth,
number of surface and bottom reflexions, emitters
and receivers number, distances among receivers
and emitters, sampling frequency, etc.

We should mention that the considered channel
model is far from being a general and real one. Even
though, the obtained channels can be characterized
by a long (i.e. filter orders are up to 2500) and
sparse (most of filter coefficients vanish) impulse
response. The modified and simplified channels are
still very challenging. In our future work, more re-
alistic model will be taken into consideration.

2.2 Basic features of Acoustic Source

Signals

In a passive acoustic tomography scenario, the
source signals are signals of opportunities, i.e.:

• Natural signals: wave noise, earthquake, etc.

• Animals’ signals: Motion noise (the prawns
or shoal of fish motion noise) activity noise
(Alpheus armatus, Red Snapping Shrimp, can
produce can produce a strong snapping sound
as a self-defence or to catch their prey, etc.),
animals’ sound (as the dauphines’ and whales’
sound, etc.)

• Artificial signals due to human activities
(sonar, submarine or ship noise, etc.)
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In [2], an extensive experimental study has been
conducted in order to classify and characterize
many recorded anthropogenic signals (made by hu-
man activities) and natural signals (mainly animals
sounds or natural noises). According to that study,
one should take into consideration the following fea-
tures1:

• Recorded signals are affected by a background
ocean noise which can be considered as an Ad-
ditive White Gaussian Noise (AWGN).

• Many signals are Gaussian or they have a very
weak kurtosis [10].

• Almost all of the signals are non-stationary sig-
nals with more or less cyclic behavior as boat
noises.

• Natural signals are very sparse ones and artifi-
cial ones are very noisy.
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Figure 2: Natural acoustic signals

In order to characterize the typical and the most
common signals, we conducted another study based
on statistical criteria and using various ICA algo-
rithm [9, 6]. According to the latest study, The sig-
nals have various properties such as spatial diver-
sity, different probability density functions (pdf),
different temporal or spectral structures, different
time-frequency signatures, etc :

• Most of signals are transitory signals with some
distribution close to Gaussian ones.

• The sources have very inhomogeneous power
(the power ratio can be up to a dozen of dB).

• Signal to Noise Ratio (SNR) can be very lim-
ited depending on the operational situation.

• Even though ICA algorithms can handle con-
volutive mixtures. However, in our applica-
tions, the channel filter orders can be up to

1Only, the main relevant features to our application are

mentioned.

few thousand. At the same time, such filter
is very sparseness one. In fact, just few filter
parameters do not vanish.
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Figure 3: Artificial acoustic signals

In PAT applications, simple and cheap systems
are often used which means that linear multi-sensor
antenna are not recommended. Mainly, for this
reason, ICA algorithms [?] can be used as a pre-
processing stage to separate the received mixed sig-
nals into a set of independent and simple signals.
This stage becomes an essential one, when a real
life PAT scenario is considered. This pre-processing
stage can simplify the task of the required acous-
tic tomography algorithms. In fact ICA algorithms
can successfully handle Multi-Input Multi-Output
(MIMO) channel. However, a real scenario of war-
fare applications makes the use of any ICA algo-
rithm becomes very challenging. In fact, our ex-
perimental results show that many ICA algorithms
couldn’t give satisfactory results. The above men-
tioned properties have been considered to select and
modified appropriate ICA algorithms [8].

2.3 High order statistic estimator

Many ICA algorithms or performance indexes, this
point will be addressed afterward, are based on high
order statistics. As we previously mentioned, the
acoustic source signals are strongly non-stationary
signals. In this case, the estimation of high or-
der statistics becomes a highly challenging problem.
For this reason, we previously proposed new high
order statistic estimators adapted to our acoustic
signals, further details can be found in [13, 14].
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Figure 4: Estimation of cumulant3x1: The theoret-
ical value is given in black, the classical estimator
given in red, the new proposed estimators are in
blue and in green.

2.4 Source Number

It has been already mentioned that the number,
the positions and the features of the source signals
are unknown. The channel parameters are strongly
affected by the positions of the sources. This
point has been discussed in section 2.1. The main
features of the signals are also been discussed in
the previous two subsections. It is well known that
the number of sources is an important parameters
for many ICA algorithms. We should mention
that some ICA algorithms can roughly estimate
that number. However the estimation results are
satisfactory in our application.

Using the singular value decomposition of specific
matrix along with some filter estimation algorithms,
we proposed estimators of the source number [6].
This study is beyond the scope of the manuscript
and it will be addressed in a future publication.

2.5 Performance indexes

Nowadays, a big number of ICA algorithms can be
found in the literature [11]. Most of these algo-
rithms have been proposed to deal with specific sig-
nals or channels in various applications [12]. In the
case of similar applications, the choice of an ap-
propriate algorithm can be easily done. Obviously,
an appropriate selected algorithm should give the
best experimental results. We should mention here
that the acoustic signals aren’t intelligible signals
and they are strongly non-stationary signals. In
addition, the underwater acoustic channel can be
modeled by high order sparse filters. These prop-
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Figure 5: Estimation of source number using 5 ob-
served signals and 4 acoustic sources.

erties means that an objective comparison among
the algorithms becomes very hard. For this reason,
we conducted a study on the available performance
indexes. In that study, a set of modified or new per-
formance indexes is proposed , further details can
be obtained in [7].

3 Mathematical Model

Under some mild assumptions (i.e. Multiple Input
Multiple Output configuration and ray propagation
model) [3], acoustic underwater channel can be con-
sidered as multiple paths which, in frequency do-
main, each of them can be defined by a complex
constant gain. Let S(n) denotes a vector of p un-
known sources which are statistically independent
from each other. X(n) is a q × 1 observed vector.
The relationship between S(n) and X(n) is given
by:

X(n) = [H(z)]S(n) + N(n) (3)

where H(z) stands for the channel effect.

4 ICA Algorithms Applied to

Acoustic Signals

In our study, many ICA algorithms have been
implemented and tested. Almost all of the tested
algorithms can’t perform well. For this reason,
a complete separation structure has been imple-
mented using pre- and post-processing modules of
the signals, see fig. 6 or [8] for further details.

The two selected algorithms are:
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Figure 6: General Structure.

• A Frequency domain method for BSS of con-
volutive audio mixture (SOS) proposed by K.
Rahbar et al. in [19].

• Convolutive Blind Separation of Non-
Stationary Sources proposed by Parra et

al. in [18].

5 Experimental results

Using the structure proposed in Fig. 6, many
simulations have been conducted. Generally, over
500000-1000000 samples are needs to achieve the
separation. The original sources are sampled
at 44KHz. In almost all the simulations, The
separation of artificial or natural signals have been
successfully achieved. Fig. 7 shows us different
experimental results obtained by the different
algorithms (Parra, SOS or Parra + SOS), each
point corresponds to results of random simulations
using Parra, SOS or Parra & SOS algorithms.
In this figure, a normalized positive performance
index based on a nonlinear decorrelation is used
[7]. The normalized performance index is forced to
be zero for the mixture values and 1 for the sources.

6 Conclusion

In this manuscript, major problems facing the ap-
plication of ICA algorithms in the Passive Acous-
tic Tomography (PAT) has been presented. Many
simulations have been conducted and experimen-
tal studies show the necessity of considering pre-
processing and post processing of the observed sig-
nals in order to achieve properly the separation of
the sources. Many raised points have been solved.
However, the obtained results can still be improved
using more appropriate models which require more
resources and computational efforts. These points
will be the goal of our future studies.
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Figure 7: Experimental results obtained by the dif-
ferent algorithms (Parra, SOS or SOS + Parra) on
divers configurations and using a normalized perfor-
mance index (here the three curves represent max-
imum, minimum and average performance levels)
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