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Abstract

In this work, we deal with the elimination of artifacts (electrodes, muscle, respiration, etc.)
from the electrocardiographic (ECG) signal. We use a new tool called independent component
analysis (ICA) that blindly separates mixed statistically independent signals. ICA can separate
the signal from the interference, even if both overlap in frequency. In order to estimate the
mixing parameters in real time, we propose a self-adaptive step-size, derived from the study of
the averaged behavior of those parameters, and a two-layers neural network. Simulations were
carried out to show the performance of the algorithm using a standard ECG database. © 1998
Elsevier Science B.V. All rights reserved.
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1. Introduction

Many attempts were carried out to eliminate corrupting artifacts from the actual
cardiac one when measuring the electrocardiographic (ECG) signal.

Cardiac signals show the well-known repeating and almost periodic pattern.
This characteristic of physiological signals was already explored in some works
(e.g. [5,17,22]) by synchronizing the parameters of the filter with the period of the
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signal. However, those filters fail to remove the interference when it has the same
frequency of the cardiac signal.

On the other hand, many works were carried out in the field of blind source
separation (BSS), using a new tool called independent component analysis (ICA). This
large number of works may be because the ICA algorithms are in general elegant,
simple and may deal with problems when second-order statistics (SOS) methods' in
general do not work. This is because SOS algorithms usually search for a solution that
decorrelates the input signals whereas ICA looks for statistically independent signals.

ICA is based on the following principle. Assuming that the original (or source)
signals have been mixed linearly, and that these mixed signals are available, ICA finds
in a blind manner a linear combination of the mixed signals which recovers the
original source signals, possibly re-scaled. This may be carried out by using the
principle of entropy maximization of non-linearly transformed signals.

Our study goes toward speed of convergence and quality of the output signal. The
justification for a faster algorithm is that biomedical signals [5,17,18,21] are non-
stationary and their environment is changing constantly. However, we are rather
concerned about finding an algorithm that quickly tracks those changes than about
the computational time.

In this work, we propose a self-adaptive step-size for ICA algorithms which acceler-
ates the speed of convergence. Instead of dealing with the non-linear cost function of
ICA algorithms which would be optimum, we carry out our analysis in a mean-squared
framework. For this approach, we can solve the problem of bounds to the step-size and
derive the optimum one for one step convergence. In this field, there is the work of
Douglas and Cichocki [15], with focus on decorrelation networks. Cichocki and his
colleagues [11] also proposed a self-adaptive step-size. However, our attempt here is to
find a step-size which is directly based on the evolution of the algorithm.

Moreover, we propose a neural network consisting of two layers of ICA algorithms.
Some works [6,9,16] suggested to carry out whitening before the ICA algorithm in
order to orthogonalize the inputs, which yields a faster convergence. The basis of our
two-layer network is the same. However, we argue that using a cascade of two ICA
algorithms is a stronger principle, because both are searching for independent solu-
tions. Belouchrani et al. [8] also proposed a multi-layer network, but they were not
interested in comparing the multi-layer results with the pre-whitening. This is carried
out here, by simulations, for different initial conditions.

2. Independent component analysis (ICA)
The principle of ICA may be understood as follows. Consider n source signals

s = [S1,5,...,5,]" arriving at m receivers. Each receiver gets a linear combination x of
the source signals, so that we have

xX=As +n, (1)

1Such as the one proposed in [5,17,22].
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where A4 is an m x n matrix, and »n is the noise, which is omitted because it is usually
impossible to distinguish noise from the source signals, therefore, we omit it from now
on. The purpose of ICA is to find a matrix B, that multiplied by 4, will cancel the
mixing effect. For simplicity, we assume that matrix A is a n x n invertible square
matrix. Ideally, BA = I, where [ is the identity.

The system output is then given by

7 =Bx =BAs = Cs, (2

where the elements of vector s must be mutually independent. In mathematical terms, it
means that the joint probability density of the source signals must be the product of
the marginal densities of the individual sources [19]

9=T1 pts ®

Thus, instead of searching for a solution that uncorrelates the signals, ICA looks for
the most independent signals which is a much stronger principle.

3. ICA as a density shaper

With ICA, one wants to find a way to estimate the true distribution p(s, ) of
a random variable, given the samples z, ..., zy. In other words, ICA is a probability
density estimator, or density shaper.

Given the modifiable parameters 0, we should find a density estimator p(z, 0) of the
true density p(s, 0). This may be performed by entropy maximization, mutual informa-
tion minimization, maximum likelihood or Kullback-Liebler (K-L) divergence. We
take, for instance, the K-L divergence, given by

N p(s, 0)
I{p(s,0).5(z,0)} = Jp(s 0)log——= . Q)d (4)

A small value of the K-L divergence I{p(s), Pz 0 )} indicates that Pz, 0) is close to
the true density p(s, 0). Hence, we should minimize [{p(s, 0), p(z,0)}, and this can be
carried out by using a gradient method. However, instead of the conventional
Euclidean gradient method [6], which reads

ék-%— 1= gk

:“kae I{p(s,0), p(z,0)}, (5)

we rather use the following gradient:

_ _ 5 o
0k+ 1= Hk - ﬂksﬁl{p(sa 9): p(z: 8)}9 (6)
k

where J is a positive-definite matrix.

This is called the relative [9,10], natural, or Riemannian gradient [3,4]. This
algorithm works better in general because the parameter space of neural networks
is Riemannian [1].
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To obtain a better estimation, Pearlmutter and Parra [20] derived an algorithm
that extracts many parameters related to the signal, and therefore their parameter
space S = {0} was built with many variables. However, in most of the works, the
gradient method shown above was derived using only the weight matrix B as the
parameter to be estimated. For this case, we have J = B"B and the weights of B are
updated by [9]

By 1 = By — [ — N(zi) 1By, (7)

where N(-) is a non-linear function. In this work, we use the following function, as
suggested by Bell and Sejnowski [6]:

By = By + (I — y21)B, (8)

with z = Bx and y = tanh(z).

And this is the secret of ICA: this non-linearity tries to shape the sources distribu-
tion. In other words, if one expands this non-linearity in a series of Taylor, higher
order moments appear. For example, if we use one sigmoidal function, which is used
frequently in neural networks, one can see that

w 2wt
tanh(u) = u 3 + 5 + e 9)

It should be added, however, that even though these methods are said to blindly
estimate the sources, some prior knowledge is necessary in order to choose this
non-linearity. As we have seen, ICA is also known to be a density estimator. In other
words, the non-linearity g should be chosen so that

u

yi=gu) = J Jf(v)do, (10)
where f; is the density of s.

In practice, it is not very necessary for this equation to hold. For signals with
a super-Gaussian distribution (kurtosis > 0), it did not pose as a problem to separate
them using Eq. (8). In the case of sub-Gaussian signals, Cichocki and his colleagues
[12] suggested the following equation:

Bii1 = By + I — 294)B. (11)

An interesting discussion about this topic was carried out by Amari [2].

3.1. Indeterminacy of the solution

Because the system works in a blind manner, B does not necessarily converge to the
inverse of 4. We can only affirm that C = DP, where D is a diagonal, and P is
a permutation matrix [13]. Without any a priori information, which is the case of
blind source separation, nothing can be done concerning to the permutation, but we
can still normalize the weight matrix to avoid the problem of random scaling. An
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interesting solution is to preserve the entropy of the input signal, normalizing the
weights by?

B « |det(B)|'""B. (12)

3.2. Equivariance property

An equivariant estimator A(-) for an invertible n x n matrix M is defined as [9]
A(Mz) = M Azy). (13)

This property can be applied to relative gradient algorithms. Multiplying both sides
of Eq. (7) by A yields

Cir1 = G — I — N(Cisi) ]G (14)

Therefore, the trajectory of the global system C = BA is independent of A. In other
words, if one changes the initial weight, the whole learning trajectory will be changed.

3.3. Filtering

Sometimes a filtering operation can be very useful in some ill-conditioned mixing
problems. Here we discuss a filtering operation that preserves the mixing matrix. With
this, one can alter the power spectral response of the signals in order to help in the
quality of the separation. If the matrix is preserved and its inverse (or a scaled version
of it) can be estimated by ICA, then one can easily recover the source signals.

A causal filter for the mixed vector x with impulse response H(t,7), can be described
by

t

) = Jt H(t, t)x(t)dr = j H(t,7)As(7)dx. (15)

— 0 — 0

We assume that this first-order linear system may be time-variant. Moreover, we
should find a H(t,7) so that the following holds:

) = AJI H(t,7)s(t)dx. (16)

In other words, the filtering operation should not alter the structure of matrix A4.
For this to happen, the impulse response H(t, t) should be a diagonal matrix with the
same elements, i.e., H(t, 7) = h(t, 7)I, which implies that the elements of vector x should
be passed through the same filter.

2With a unitary determinant, the entropy of the mixed and of the output signal will be the same [14].



178 A.K. Barros et al. | Neurocomputing 22 (1998) 173—186
4. Time-varying step-size for ICA algorithms

From Eq. (7), the output correlation matrix will be given by
T = E[zz] = E[BwxxBy]. (17)

In this analysis, we make use of the independent assumption. This effectively implies
that x; is independent of former values and that the elements of B, are mutually
independent. This is very common in the field of adaptive filtering to use this
assumption, even though it is rarely true in practice.

If the fluctuations in the elements of By are small, we can thus rewrite Eq. (17) as®

T, = E[B,JRE[By], (18)

where x is assumed to be stationary constant; in other words, the input covariance
R = E[x,x]] is constant. However, the same cannot be said about T}, = E[z;zs ], thus it
is assumed to be non-stationary.

Using Egs. (8) and (18), we can write

Tis1 = E[(1 + )l — iz JTEL( + )l — wzipi ]
=1+ w)’ T — w1 + TPy — (1 + w)PLTy + i PLT Py, (19)

where T, = E[z; yi ]
If we assume that the variation of z; is bounded to the interval [ — 1,1], we can then
say that in this limit y; &~ z; and P &~ T,. Then, Eq. (19) can be written as

Tii1 =1+ w)’Te — 2wl + w)Ti + 1 T3 (20

There is a unitary matrix Q that diagonalizes T} so that A; = Q"T;Q and Q"Q = I.
Thus, we can rewrite Eq. (20) as

Avr =1+ w)* A — 21 + w) AR + 2 A;. 21

Notice that when deriving Eq. (21) from Eq. (20) the orthogonal property of Q was
used.*
From Eq. (21), the eigenvalues of T} are the elements of A, and are given by

Ao = (1 + ) e — 21+ w2 + i 2 (22)
For uniform convergence in a mean-squared sense, it is required that A, 4+, ; < Ay
which yields the following bounds for the step-size:’

0< e < (23)

}vk’i - 1‘

3 The following steps are similar to the one carried out by Douglas and Cichocki [15].
*For example, Q"TV,Q = Q"TQQ"V,0.
5 This derivation is carried out simply by substituting 4,1 ; < /; in Eq. (22).
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From Eq. (23), the optimum step-size which will give one-step convergence
is
2
=— 24
Hopt 1 ( )

k,i

Using Eq. (23) and the assumption that y, ~ z,, we propose then to use the
following step-size to update the weight matrix:

2
e 25
Hic yEZk + 1 ( )
When proposing the step-size above, we had in mind the following:
2 2 2
(26)

Zi;“k,i + 1 < }Vk,i + 1 < ik,i — 1

5. A network for fast blind separation

In this work, we are mainly interested in using ICA to filter noises which are
possibly overlapping in frequency the cardiac signal. However, we do not want that
this use of ICA implies in a longer time of convergence. Usually, ICA has a
slower convergence compared to the classical LMS, because ICA is also
estimating higher-order moments. Thus, we propose an architecture to deal with this
matter.

It is very common among researchers to use a whitening filter before the ICA
algorithm itself. The reason is that the whitening carries out a decorrelation between
the input signals. Then, the ICA work is reduced to estimate the moments higher than
two, with this, one gains in speed.

Here, we propose a different reasoning. Instead of using only second-order statis-
tics, we suggest the use of a network that substitutes the whitening by an ICA
algorithm itself. With this, we are not only estimating the second, but also higher-
order moments. We will see that this simple substitution implies in a much faster
convergence.

The architecture includes other points to improve the speed of convergence as
shown in Fig. 1. In resume, they are given below.

e Pre-process the mixed signals by a high-pass filter operation that obeys Eq. (16).
Later we will discuss why this is important.

e Use a time-varying step-size for faster convergence as in Eq. (25).

e Use a two-layer network. The two layers are cascaded in series and the first layer is
only used for convergence. The second layer is updated in a batch mode, and the
first, at every iteration (to avoid instability of convergence) and it is turned off after
a given number of iterations.
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Fig. 1. Block diagram of the proposed method. The signal is inputed into a high-pass filter, then to the first
layer (ICA%), which is updated only up to a number of iterations. The other layer (ICA?) is always “turned
on”.

6. Simulations

We have carried out simulations to test the validity of the proposed method. The
simulation consisted in mixing actual ECG and electrode motion artifact (usually the
result of intermittent mechanical forces acting on the electrodes) signals. We used
signals from the MIT-BIH noise stress test database, which are standard for testing
ECG analyzers. Their power spectrum is shown in Fig. 2. Notice that the fundamental
frequency of the ECG signal (around 1 Hz) is overlapped in frequency by the electrode
artifact one. The mixing was carried out using different random matrices.® The first
layer (ICA") in Fig. 1 was turned off after 1000 iterations. For all cases, we initialized
the weight matrix by the identity matrix. The filter cutoff frequency was 2 Hz, and the
weights were updated every block size of 50 iterations.

7. Results

We used as figure of merit to measure the quality of separation at the kth iteration
the following equation:

Pe=200 ¥ (k) — 0.5)

j=1.2

~ lci.jl } .
ck); = max{—' for j = 1,2. (27)
! Zi|ci, i
With this index, we are measuring how far the matrix C is from the solution DP at
each iteration. When C = DP, only one element at each column/line is different from
zero. The index ¢ will be 100 for the best case, and will be null for the worst.

% By the equivariance property, we can conclude that this would be equivalent to keeping the mixing
matrix constant and changing the weight initial value.
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Fig. 2. Power spectrum of the two source signals: ECG and electrode motion artifact. Notice that the first
harmonic of the ECG signal (around 1Hz) is overlapped in frequency by the respiratory one.

We have extensively run the proposed algorithm for different randomly
mixed vectors. Fig. 3 shows a summary of the results. The simulations were carried
out using:

e Filtering and no filtering. For these two cases, we carried out the simulations using:

O The proposed method as in Fig. 1, with two ICA algorithms and a time-varying
step-size as in Eq. (11).

O The same configuration of the item above, but instead of an ICA algorithm, we
used a whitening one in the first layer. This was conducted by substituting the
non-linear function in Eq. (8) by y = erf(z).”

O One ICA algorithm as in Eq. (11).

The index as in Eq. (27) was calculated for each simulation, and they are shown in
Fig. 3. The signals recovered by the proposed network are shown in Fig. 4. The
“recovered signals” were obtained after normalizing the weights as in Eq. (12).

7This algorithm was named by Bell and Sejnowski [6] as “Gaussian component analysis” (GCA), to
differ from PCA and ICA. This function searches “for the decorrelated solution which gives the most
Gaussianly distributed outputs”.
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Fig. 3. top: This plot shows the performance index as in Eq. (27) for different algorithms, but without
filtering. The solid line is for the case of the proposed ICA + ICA architecture; the dashed, for whiten-
ing + ICA one; and the dotted, for ICA only. middle: same as the top, but with filtering. Notice the lower
variance compared to the plot in the top. bottom: this plot shows which algorithm was the fastest in an
ensemble of 70 runnings for different initial matrices C, not mattering the time of convergence.

8. Discussion

By looking at Fig. 3 we arrive at the following conclusions:

e Comparing the plots in the top and in the middle, we can see that the filtering was
important in order to have less variance after convergence. This is because the
lower-frequency signal (trend) was removed. The trend is usually accounted in the
literature as non-stationary mean. Besides, the high-pass filter is also removing
the overlapping that occurs at 1 Hz, and we believe that this fact also helped in
order to have a better quality in the output.

e The two-layer ICA network performed better in general than the others, as one can
see in the plot in the bottom. We should enforce, however, the fact that in the
referred plot, we did not care about the speed of convergence, but rather, about
which one reached first an acceptable level of separation (g in Eq. (27) around 80).

Another point that should be emphasized is that of the adaptive step size. When we
started using ICA, the greatest problem in our point of view was that of step-size.
Since we wanted a fast convergence, we had to fix the step-size to some upper value,
otherwise the algorithm would not converge. Therefore, for these ECG and electrode
noise data, we found heuristically an upper bound of 2 x 10~ * for the learning rate. We
compared then this learning rate with the adaptive one, derived here. Fig. 5 shows
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Fig. 4. An example of the original, mixed and recovered signal by the proposed network. In this case,
A=[11091].
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Fig. 5. Values of p as in Eq. (27) for different initial random weight matrices CI, C2 and C3. The labels are
as follows: solid: ICA with adaptive learning rate; dotted: ICA with a constant learning rate of 2 x 10~ %;
dashed: ICA with a constant learning rate of 2 x 10>,
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this result. We can see that the self-adaptive learning rate allowed a much faster
learning, without diverging.

Some words are necessary about the two-layer networks. Some works, e.g., [7,16]
have proposed to carry out whitening before the ICA processing in order to ortho-
gonalize the input components. In the same way, we have used the first layer to force
the algorithm to search for independent components. We argue, however, that
cascading two ICA algorithms is a stronger principle because the first layer looks for
an independent rather than an orthogonal solution. Contrary to whitening, that uses
only second-order statistics, I[CA makes also use of higher-order moments.

It is important to emphasize that the proposed network, in all the simulations,
converged in less than 2000 iteration, while it did not always happen with the others.
Again Fig. 3 shows a good example of it. By looking at the plot in the middle, we can
see that the ICA algorithm reached convergence at around 3000 iterations, and the
ICA + whitening network, in around 4000 iterations. For ECG signals, which are
usually sampled at frequencies around 100 Hz, it means a delay of 10-20s, i.e., the data
in this interval should be disregarded.

Probably, the reader is asking why we did not use the two layers in the whole
trajectory, but rather, we switched it off after some iterations. We carried it out, but
the variance after convergence for such configuration was higher. Therefore, roughly
speaking, the first layer works as a propulsion to put the algorithm in the way to
converge to one of the solutions C = DP.

9. Conclusions

In this work, we proposed an architecture to blindly separate linearly mixed signals,
based on the independent component analysis principle. The architecture consisted of
a high-pass filter, a two-layer network based on ICA algorithm and a self-adaptive
step-size. The self-adaptive step-size was theoretically derived from the mean behavior
of the output signal.

The proposed network composed of two ICA algorithms converged faster than the
one composed of whitening plus an ICA algorithm, where whitening stands for an
algorithm designed to orthogonalize the input signals. We argued that the two-layer
network of ICA algorithm behaves better because the first layer is searching for an
independent solution, rather than an orthogonal. This conclusion was confirmed by
simulations. The proposed self-adaptive step-size also lead to a fast convergence,
though with a greater error.
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