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Abstract

This paper deals with a new modulation recognition

algorithm based on an analysis of time-frequency

representations of di�erent modulated signals (PSK,

QAM and FSK). At �rst, we conduct experimen-

tal studies over a range of time-frequency represen-

tations (TFR) in order to choose the more appro-

priated one. Once, an appropriated TFR has been

chosen, some statistical functions applied on that

TFR are used in order to extract the desired in-

formation included in the representation. The de-

sired information could be used to estimate the sym-

bol duration estimation. Otherwise a classi�cation

scheme that allows to distinguish PSK, FSK and

QAM. Finally, many experiments and simulations

have been conducted and we present the obtained

results.

1 Introduction

For the last three decades, digitally modulated sig-

nals such as QAM (Quadrature Amplitude Modula-

tion), PSK (Phase Shift Keying), FSK (Frequency

Shift Keying), TCM (Trellis Coded Modulations),

CDMA (Code Division Multiple Access), as well

as OFDM (Orthogonal Frequency Division Multi-

plexing) have been used in many important ap-

plications such as satellite communications, mobile

phone, military communications, etc. Therefore,

automatic recognition algorithms for these signals

are very attractive especially for electronic warfare,
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control of civilian authorities over the radio-band

frequency as well as for control of communication

quality. In [1], the authors developed a statistical

recognition algorithm and they cited and discussed

many other algorithms proposed by di�erent other

researchers [2, 3]. Almost all of these algorithms are

based on statistical approaches.

Recently, Time-Frequency Representations (TFR)

have been developed by many researchers [4, 5, 6]

and they are considered as very powerful signal pro-

cessing tools. In our previous work [7], we proposed

a statistical algorithm to estimate carrier frequency

and to distinguish the di�erent type of modulation

(especially PSK versus FSK). However, the clas-

si�cation process didn't include QAM modulation

and many importing features as symbol duration

couldn't be estimated. To complete our previous

algorithm, we develop here a complete process of

classi�cation of QAM, PSK and FSK. Moreover, we

propose a new algorithm of symbol duration estima-

tion based on modi�ed statistical functions which

have been applied to di�erent TFR. Finally, many

experiments and simulations have been conducted

and are presented.

2 Time-Frequency �eld

Obviously, the choice of an adequate TFR is very

important to reach our goal [8, 9]. For this rea-

son, experimental studies have been conducted. An

adequate TFR must be the simplest function that

keeps all the desired information (symbol changes

for instance). Assuming these requirements, we

found that a Pseudo-Wigner-Ville transform, de-

noted TFR(t; f), can be considered as a good can-
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didate TFR among many other tested TFR such

as Wigner-Ville, Smooth Pseudo-Wigner-Ville, Cho-

Willims, Born-Jordan, Zao-Atlas-Mark as well as

spectrogram representations. The major drawback

of a Wigner-Ville TFR is its strong awkward interfe-

rence terms. Among �ltered version, we have found

that Pseudo-Wigner-Ville is a best trade-o� between

simplicity and eÆciency (cf Figure 1). Let s(t) to

be a modulated signal, in this case, one can write:

TFR(t; f) =

Z
�

s

�
t+

�

2

�
s�
�
t�

�

2

�
h(�)e�2j�f�d�

(1)

where h(�) is an applied �lter. Without loss of gen-

erality, one can assume that the observed modulated

signals contain at least 100 symbols. Using this as-

sumption, one can adjust the size lh of the previous

�lter h(�). However, this value in not critical but it

can justify or not the appropriateness of the Pseudo-

Wigner-Ville.

Hereinafter, we consider that the time-frequency do-

main as a succession of time slots TFRt(f) or spec-

tral slots TFRf (t) and we de�ne:

Nt =

vuut MX
f=1

TFRt(f)2

TFRt(f) =
j TFRt(f) j

MX
f=1

j TFRt(f) j

(2)

where M is the number of frequency bins, Nt is the

modulus of a time slot and TFRt(f) the normalized

time slot which values are between 0 and 1.

3 Type of modulation

The modulation recognition procedure consists

on the estimation of di�erent modulation param-

eters. In order to reach this goal, one should

�rstly process observed signals to classi�ed them

into divers modulation types such as QAM, PSK etc.

A �rst approach toward the classi�cation task

could be a classi�cation based on the frequency

components existence in the modulations (i.e. FSK,

OFDM contain multi frequency components instead

of mono-frequency for the other modulations). To

detect the multi-frequencies of a modulated signal,

one can use many techniques. In our experimental
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(c) FSK 4

Figure 1: Pseudo-Wigner-Ville representations of

modulated signals with lh = 11, N = 1024 sam-

ples, fc = 0:15 relative carrier frequency, d = 64

symbol duration and a SNR = 5dB.

study, we found that a simple Power Spectral

Density (PSD) of the signal is suÆciently enough

to achieve this task.
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Obviously, the number of PSD picks gives a �rst ap-

proximation of the type of the modulated signal. As

the PSD has been estimated using samples of noisy

data, the estimated PSD function su�ers from spu-

rious extrema. A technique has been developed in

order to give all the local maxima. When the es-

timated PSD becomes a mono-modal function, one

can be sure that the observed signal isn't a FSK nei-

ther an OFDM modulation. Unfortunately, in the

opposite case i.e. when the obtained PSD becomes

a multi-modal function, no decision can be consid-

ered. In fact, for noisy data, spurious picks can take

place on the estimated PSD and they can be consid-

ered as composite frequencies. Therefore, QAM and

PSK modulations can be taken for FSK or OFDM

modulation. To deal with this speci�c problem, an

energetic analysis of the PSD function has been set

up. The main idea is to estimated the mean en-

ergy of the signal, Emean, over a growing window

centered on fc:

Emean =
1

Wsize

f=fc+WfsizeX
f=fc�Wfsize

PSD(f)2

where Wfsize =
Wsize

2
< M � fc is the half width of

the estimation window and fc stands for the index

of the carrier frequency.

For FSK modulations, the obtained curves present

several maxima whereas PSQ and QAM modula-

tions give strictly decreasing energy curves. Thus,

the sign of the derivative curves can be used to

classify the modulation. Once FSK is considered,

PSD curve gives other information such as the

number of states which can be simply the number

eÆcient maxima in the PSD.

Spectral analysis can not be used to distinguish bet-

ween PSK and QAM signals. Indeed, the main dif-

ference between QAM and PSK can be the energy

changes of the signal over time. The previous state-

ment can be useful to emphasize the di�erence bet-

ween the two mentioned modulations. Indeed, by

making a threshold on maximum normalized am-

plitude of a �xed size slippery window energy on a

TFR, we found the right type of modulation.

4 Symbol duration extraction

We should mention that the symbol transitions af-

fect the modulated signal and they generate some

discontinuities in the time-frequency domain (cf Fig-

ure 1). These discontinuities characterize perfectly

the symbol rate and the symbol duration. To ex-

tract symbol rate using the TFR discontinuities,

some statistical functions have been modi�ed and

applied to TFR.

4.1 Functions' de�nitions

At �rst, a simple derivative function is considered:

Der(t) =

MX
f=1

j TFRt+1(f)� TFRt(f) j

The previous function presents some picks whenever

two successive vectors are di�erent. Unfortunately

Der(t) is quite sensitive to noise.

To be more robust to noise, we considered another

function based on vectorial product, V P (t):

V P (t) = Nt Nt+1 sin(�t;t+1)

It is clear that this function is sensitive to a

frequency transition. In fact, in this case the two

successive vectors are orthogonal and V P (t) has a

maximum. This function is especially adapted to

analyze a FSK modulation.

Based on information theory [10], a normalized ver-

sion of the entropy, Ent(t), is proposed. It is known

that the entropy function is based on probability

density functions (pdf). Therefore, a normalization

should be considered in the �rst stage. A normal-

ized vector, TFRt(f) should be used and the Ent(t)

becomes:

Ent(t) =
�1

log10M

MX
f=1

TFRt(f) log10TFRt(f)

Such a function will be equal to 1 if the studied

vector is uniformly spread. Symbol transition is

characterized by an important energetic spread and

it gives a pick on Ent(t).

On the other hand Kullback-Leibner divergence,

Div(t), is a nice criterion to compare two pdf and it
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can be considered as the generalization of mutual-

information:

Div(t) =

MX
f=1

TFRt(f) log10

�
TFRt(f)

TFRt+1(f)

�
(3)

In our case, Div(t) becomes a measure of an

asymmetric distance between two successive nor-

malized vectors. Therefore it is suitable for most

of modulated signal and especially for a PSK, see

Figure 2.

Finally, we consider a function based on time vari-

ations of the representation at f = fc. The lat-

ter function is named \Carrier Variations" and it is

given by:

CV (t) = TFR(t; fc) = TFRfc
(t)

As PSK and QAM modulations are carried by using

only one frequency f = fc, all the related informa-

tion is present in CV (t). Thus, symbol transitions

generate local minimum in CV (t). Unfortunately,

CV (t) can't be used to deal with FSK signals.

4.2 Pulse Repetition Interval Estimation

Once the modulation has been recognized, and an

extraction function has been applied, an estimation

algorithm should be used to estimate the distance

among the picks. Similar problem is well-known

in ELectronic INTelligence (ELINT) �eld to esti-

mate the Pulse Repetition Interval (PRI). The dif-

�culties for the estimation of the PRI are of vari-

ous origins: temporal jitters on measurements, mis-

sing pulses and parasite pulses. Solutions based on

optimal �ltering [11, 12] need a complete model of

perturbations. Many experiments have been con-

ducted and we found that Kalman or recursive �l-

tering algorithms don't achieve better performances

than a simple periodogram since our model is less

noisy than the ones considered in ELINT.

5 Experimental Results

The experimental results have been obtained for

PSK, QAM and FSK simulated signals of N = 4096

points and di�erent number of states as 2, 4 and

8 for PSK and FSK signals and 16, 32 and 64 for

QAM. The noise is "AWG", Additive White and

Gaussian.
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Figure 2: Divergence for a PSK modulation

based on a PWV with TFR-trunc.=15%, TFR

thres.=0.177, lh = 11, N = 1024 samples, fc = 0:15

relative carrier frequency, d = 64 symbol duration

and a SNR = 10dB.

5.1 Type of modulation

As far as the type of modulation is concerned, good

experimental results have been observed (cf Ta-
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ble 1). Indeed, for many modulation types, the de-

tection rates are very signi�cant (greater than 90%)

even for a SNR near 0dB. We can peculiarly notice

the good results for FSK and QAM modulation.

PSK QAM FSK

5dB 91.66% 98.02% 99.03%

0dB 90.62% 97.03% 99.03%

Table 1: Detection of modulation type for some

modulated signals.

5.2 Symbol duration

Concerning the estimation of symbol duration, we

found that the experimental results are less attrac-

tive than the results presented in the previous sub-

section. Indeed, we found that the performances are

quite depending on the modulation type i.e. none

of the previous cited functions can give satisfactory

results for all type of modulation. Besides, accord-

ing to the duration value, extraction is more or less

diÆcult. Thus the shorter the duration is the more

diÆcult the PRI estimation is. However, if the du-

ration is very long, some states can disappear and

therefore yield to a wrong estimation. These disad-

vantages have been considered in our simulations.

CV Der Ent Div

10dB 100% 82.69% 57.05% 58.97%

5dB 100% 84.43% 29.94% 8.98%

Table 2: Estimation of symbol duration for 160 re-

alizations of a QAM signal.

For QAM modulation type (cf Table 2), Carrier

Variations, CV (t) seems to be the best solution. On

the other hand, the performances of Carrier Vari-

ations depend on the accuracy of the carrier fre-

quency estimation. For this inconvenient, we can

not suggest CV (t) to be used alone. However, it

can be mixed with other functions to improve the

global results. Consequently, the choice of Der(t)

can be made even for a QAM.

CV Der Ent Div

10dB 100% 100% 54.49% 98.20%

5dB 100% 98.80% 36% 94.86%

Table 3: Estimation of symbol duration for 160 re-

alizations of a PSK signal.

Concerning PSK modulations, we can mention that

the techniques of Derivative Der(t) and Divergence

Div(t) (cf Table 3) give good results even for a

small SNR.

CV Der Div

10dB 100% 100% 100%

5dB 100% 100% 100%

Table 4: Estimation of symbol duration for 160 re-

alizations of a PSK signal with d = 39.

We should mention that all conducted experiments

take into account 3 symbol durations: d = 17, 39

and 63. N = 4096 and d = 39 satisfy the con-

straint concerning that 100 symbols at least must

be present in the signal. d = 17 and d = 63 con-

cern some extreme cases. On the other hand, we

must stress on the fact that results are done with

d = 17 and 63. Such durations lead a decreasing of

the general performance. It is due to the non adap-

tation of time-frequency representation to such sig-

nals: the chosen value for the �lter length, lh, is not

enough accurate. To illustrate this e�ect, let show

the results obtained for a PSK with d = 39 (cf Table

4). There are really better than before, namely for

Div(t). We must therefore go on in order to �nd a

less constrained time-frequency representation.

V P Der Ent Div

10dB 97.48% 100% 100% 97.47%

5dB 2.02% 88.89% 81.82% 33.33%

Table 5: Estimation of symbol duration for 100 re-

alizations of a FSK2 modulation.

For FSK modulation, the choice of the adequate

function is less obvious because it depends on the

number of states. Since we can estimate this para-

meter, we have distinguished di�erent cases: FSK2,

FSK4 and FSK8. The results are presented for si-

mulated signals with d = 39.

V P Der Ent Div

10dB 100% 100% 100% 100%

5dB 23.86% 100% 100% 81.82%

Table 6: Estimation of symbol duration for 100 re-

alizations of a FSK4 modulation.

For FSK2, the estimation is less robust than for the

other FSK modulations (cf Table 5). In this case,
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one can consider two functions Derivative or En-

tropy.

V P Der Ent Div

10dB 100% 100% 100% 0%

5dB 96.63% 100% 94.38% 0%

Table 7: Estimation of symbol duration for 100 re-

alizations of a FSK8 modulation.

In the case of FSK4, the duration extraction is

very eÆcient (cf Table 6). To reach that, one

can use Derivative Der(t), Entropy Ent(t) as well

as Divergence Div(t). There are some speci�c

characteristics for Div(t). This function is very

interesting. In fact, we obtained 100% of success at

10 db and for all tested durations.

Unfortunately, Div(t) function gives bad results for

FSK8 (cf Table 7). An extraction method based

on Vectorial Product, Entropy or Derivative could

be envisaged. In addition, we should mention that

the Derivative gave good results (over 96% of good

extraction) at 10dB and over all tested durations

(d = 39, 63 or 17).

6 conclusion

This paper deals with a main step of modulation

recognition process: the symbol duration esti-

mation. This parameter has been estimated by

using some modi�ed standard statistical functions

applied to optimized Pseudo-Wigner-Ville represen-

tation. We should mention that good experimental

results have been obtained even with noisy signals.

Moreover we have also proposed a classi�cation

technique that distinguishes PSK, FSK and QAM

from each others. We should mention here that

the results of the previous section encourage us to

suggest a method which mix several functions.

Now, we are working on the recognition of the states

number of PSK and QAM modulations. It seems

that such a problem can be solved by complex time-

frequency representations or complex wavelets. The

last two theories will be the main subject of our

future work.

References

[1] E. E. Azzouz and A. K. Nandi, Automatic Mod-

ulation Recognition of Communication Signals,

Kluwer Academic Publishers, 1996.

[2] S.S. Soliman and Z.S. Hsue, \Signal classi�ca-

tion using statistical moments," IEEE Trans.

Comm., vol. 40, no. 5, pp. 908{916, May 1992.

[3] B.F. Beidas and C.L. Weber, \Higher-order

correlation-based approach to modulation clas-

si�cation of digitally modulated signals," IEEE

Journal on Selected Areas in Communications,

vol. 13, no. 1, pp. 89{101, January 1995.

[4] F. Hlawatsch and G. F. Boudreaux-Bartels,

\Linear and quadratic time-frequency signal

representations," IEEE signal processing mag-

azine, pp. 21{67, April 1992.

[5] S. Qian and D. Chen, Joint time-frequency ana-

lysis - methods and applications, Prentice Hall,

1996.

[6] P. Flandrin, Time-Frequency / Time-Scale

analysis, Academic Press, 1999.

[7] D. Le Guen and A. Mansour, \Automatic

recognition algorithm for digitally modulated

signals," in SPPRA, Crete, pp. 32{37, June

2002.

[8] H. Ketterer, F. Jondral, and A. H. Costa,

\Classi�cation of modulation modes using

time-frequency methods," in ICASSP, Arizona,

vol. 5, pp. 2471{2474, March 1999.

[9] L. Hong and K. C. Ho, \Identi�cation of digital

modulation types using the wavelet transform,"

in MILCOM, New Jersey, October 1999.

[10] T. M. Cover and J. A. Thomas, Elements of

Information Theory, Wiely Series in Telecom-

munications, 1991.

[11] S. D. Elton and B. J. Slocumb, \A robust

kalman �lter for estimation and tracking of pe-

riodic discrete processes," in ISSPA'96, pp.

184{187, October 1996.

[12] S. Sirinumpiboon, G. Noone and S. Howard,

\Robust and recursive radar pulse train para-

meter estimators," in ISSPA'96, October 1996.

-252-


