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Abstract— Extracting foetal electrocardiogram (fECG) plays 

an important role in diagnosing foetus’s health. However, in real 

clinical tests, a clean extraction of fECG is difficult to be 

obtained, because it is affected by various signals such as mother 

electrocardiogram (mECG), electromyogram (EMG) derived 

from the uterus and muscle contractions, the respiration signal, 

electronic noise, etc. Inspired by recent work estimating fECG 

subspace from a mixed ECG signals using multidimensional 

independent component analysis (MICA) along with the cyclic 

coherence (CC), we propose here an approach to separate and 

classificaty ECG signals recorded from abdominal and thoracic 

electrodes of pregnant women. The first step, blind source 

separation (BSS) is done by applying the joint approximate of 

Eigen matrices (JADE) algorithm to obtain independent 

components (ICs). Then continuous wavelet transform (CWT) is 

adopted for classifying the independent components previously 

obtained into three subspace components: fetal ECG signals, the 

mother ECG signals, and the noise. Our experimental results 

have corroborated the proposed approach using the database 

DaISy. 
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I. INTRODUCTION 

Foetal electrocardiogram (fECG) is a very important tool 

for foetus’s heart monitoring. With the aim of helping 

physicians to make a good diagnosis, it is useful to extract a 

clean fECG from observed mixed signals.  

To extract fECG, Zarzoso et al proposed a comparison 

among blind source separation (BSS) methods based on 

higher-order statistics (HOS) and windrow’s multi-reference 

adaptive noise cancellation and they conclude that the HOS 

are more robust [1]. The authors of [2] used blind source 

subspaces separation (BSSS) to extract fECG and 

demonstrated the effectiveness of BSSS over classic 

approaches based on  support vector machine technique (SVM) 

and principal component analysis (PCA) they confirmed that 

BSSS is a very ambitious approach. More recently 

multidimensional independent component analysis (MICA) 

and cyclic coherence for separation and classification of 

mixed ECG recordings from a pregnant woman have been 

proposed [3], [4], [5]. To separate fECG and mECG, FastICA 

and a pre-processing wavelet tool is proposed in [6], [7]. In [8] 

and [9] the tensor decomposition and the Kalman filter have 

been employed to extract fECG. The applying various BSS 

algorithms, in order to separate fECG and mECG signals, 

authors of [10] developed comparative study. The maxima 

modulus of wavelet is introduced to extract fECG from the 

composite abdominal signal [11]. By using wavelet 

decomposition, the authors of [12] extracted fECG by 

subtracting mECG signal from mother’s abdomen ECG signal 

(AECG). 

 

Without major information about the sources and the 

mixture, BSS methods try to extract the original signals 

(called sources) from mixed observed signals (called mixture 

signals). In this manuscript, first, joint approximate of Eigen 

matrices (JADE) algorithm [13] is used in order to extract 

independent components (ICs), then, we use Continuous 

Wavelet Transform for classifying ICs into three groups; 

fECG, mECG and noise. 

 

The manuscript is organised as follows. Section II 

introduces the blind sources separation problem and the 

multidimensional independent component analysis concept, 

than a presentation of continuous wavelet transform and the 

percentage of energy for each coefficient was achieved in 

section III. The simulation results are displayed in section IV. 

Finally a conclusion is drawn in section V. 
 

II. THE MICA CONCEPT FOR BLIND SOURCE SEPARATION 

A. Blind source separation 

Blind separation of sources problem was firstly introduced 

by Jutten and Herault [14] to study the biological signals. 

Later on, several authors interested and developed algorithms 

in various areas [15]. In biomedical applications, BSS become 

promising approaches, used to remove ECG artifacts [16], to 

eliminate ocular EEG artifacts [17], separate the EEG, EMG, 

EOG [18], … 

The main idea behind the BSS problem is to find unknown 

sources from only the observing mixture of them [19]. The 

mixture may be instantaneous, convolutive, linear or nonlinear. 

The instantaneous linear mixture is the most used, for further 

details see [19], [20].  For a linear instantaneous mixture, the 

propagation model is given by the following equation: 

 

𝑦(𝑡) = 𝐴𝑧(𝑡)                                        (1) 
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Where 𝑧(𝑡) stands for the source vector, 𝐴 is a mixing 

matrix, and 𝑦(𝑡)  becomes the observation vector (i-e 

mixture signals). 

In BSS, three main assumptions are widely used: 

i) The sources are supposed statistically 

independent of one another. 

ii)  𝐴  is a full rank matrix, and generally, authors 

consider that the number of sensors is equal or 

great than the number of sources. 

iii)  At most one of the sources can be a Gaussian 

signal. 

The transfer from bioelectric current source to skin 

electrode can be assumed linear. On the other hand the 

frequency at which the bioelectric source signals are sampled 

(250-500 Hz) can be considered as law, taking into account 

the high propagation velocity of the electrical signals. Hence 

the cutaneous potential measurements can be considered as 

instantaneous linear mixtures [21]. 

  

B. Multidimensional ICA concept 

 Multidimensionnal ICA is a generalization of the 

independent components analysis (ICA) concept, it is 

introduced by Cardoso in [22]. Later on, many approaches 

have been proposed to apply multidimensional ICA for 

biomedical signals [4], [5], [23], [24], [25]. A MICA 

decomposition, can be done by two steps:  

i) Execute an ICA algorithm in order to obtain 

estimates of monodimensional signals sources. 

ii)   Gather similar multidimensional components as 

a part of original signal. 

 

III.  METHODS 

A. The JADE algorithm 

In order to separate the mixed signals, we use Joint 

Approximate Diagonalization of Eigen-matrices [13] 

(JADE) algorithm, which can be described by four steps: 

 

1- Find the covariance matrix 𝑅𝑌  and compute a 

whitening matrix 𝐵. 

2- Find the 4
th

-order cumulants of the whitened signals 

then compute the eigenvalue 𝜆𝑟  and the Eigen 

matrices 𝑀𝑟 of the cumulants. 

3- Jointly diagonalize 𝜆𝑟𝑀𝑟  by a unitary matrix 𝑈. 
4- Compute the separation matrix: 𝑊 = 𝐵#𝑈. 

Where 𝐵# denotes the pseudo inverse of 𝐵. 

 

B. Continuous wavelet transform 

Wavelets are a mathematical tool which is used in 

several fields, we are interested in work done in the 

biomedical field. The authors of [26] used the wavelet 

detail coefficients for the accurate detection of different 

QRS morphologies in ECG. In medical magnetic 

resonance imaging, a multifractal analysis based on 

wavelets for texture classification is applied [27]. 

The continuous wavelet transform (CWT) of a signal 

𝑥(𝑡)  is the projection of this signal onto the family of 

wavelet daughter Ψ𝜏,𝑠(𝑡) . In other words, the CWT is 

defined as the inner product between 𝑥(𝑡)  and Ψ𝜏,𝑠  as 

follows [28]: 

 

𝐶𝑊𝑇(𝑥(𝑡)) = 𝑋Ψ(𝜏, 𝑠) =< 𝑥(𝑡), Ψ𝜏,𝑠(𝑡) >               (2)                   

 

Where                   Ψ𝜏,𝑠(𝑡) =
1

√𝑠
Ψ (

𝑡−𝜏

𝑠
)                             (3) 

 

 Ψ(t)  stands a continuous function called mother 

wavelet. 

 𝜏 represents a translation parameter. 

 𝑠 is a scale parameter. Note that, if 𝑠 is small, than 

higher-frequency components can be analysed, 

and when it is larger lower-frequency components 

can be analysed. 

Replacing (3) in  (2), then (2) becomes: 

   

𝑋Ψ(𝜏, 𝑠) =
1

√𝑠
∫ 𝑥(𝑡)Ψ∗

+∞

−∞

(
𝑡 − 𝜏

𝑠
)                 (4) 

 

Where * denotes the complex conjugate. 

 

The CWT can generate many wavelet 

coefficients  𝑋Ψ(𝜏, 𝑠) as functions of scales and positions. 

Wavelet families; Daubechies, Symlet, Coiflet, Biorthogonal, 

Morlet, etc. There is no rule to choose a wavelet.   

In our application, we used the Symlet wavelet transform, 

which is similar in shape to ECG signal (see Fig. 1). 

 

 
(a)                                       (b) 

 
Fig. 1  The Symlet’s wavelet shape (a), the ECG shape (b). 

 

C. Energy of wavelet coefficients 

The energy 𝐸 of a continuous-time signal 𝑤(𝑡) is defined 

as: 

 

𝐸 = < 𝑤(𝑡), 𝑤(𝑡) ≥ = ∫ |𝑤(𝑡)|2𝑑𝑡
+∞

−∞

                  (5) 

 

After computing wavelet coefficients  𝑋Ψ(𝜏, 𝑠) , we 

calculate the energy 𝐸 𝑋Ψ(𝜏,𝑠) for each coefficient. 

 

𝐸 𝑋Ψ(𝜏,𝑠)  = ∬ | 𝑋Ψ(𝜏, 𝑠)|2
+∞

−∞

   𝑑𝜏𝑑𝑠                       (6) 

The percentage of energy is given by:  

 

𝑃𝐸Ψ(𝜏, 𝑠) =
100|𝑋Ψ(𝜏, 𝑠)2|

𝐸 𝑋Ψ(𝜏,𝑠)
                      (7) 



This percentage is computed in order to classify the 

independent components (ICs). 

 

IV. SIMULATION RESULTS 

In our simulation, we use a real signals which provided by 

the database DaISy [29]. The signals contain non-invasive 

electrocardiogram of 2500 points, recorded from 8 electrodes 

located on a pregnant woman’s skin (Fig.2). The sampling 

frequency whose the signals were recorded is 500 Hz with a 

total sampling time of 5 seconds. The first five recordings 

correspond taken from the mother’s thorax. 

 

  

 

to the mother’s abdominal signals. The last three signals 

were  
 

 
 

 

 
 

 

 
 

 

Fig. 3 shows the eight channels of cutaneous data 

recordings. Channels 1-5 (Ab1,…,Ab5) indicate abdominal 

signal, where the contribution of the foetal heartbeats is 

significant. Channels 6-8 (Th1,…,Th3) give further 

information on the mother heartbeats. But all channels are a 

mix of mECG, fECG and noises as it is emphasis previously. 

At first, we applied JADE algorithm in order to separate the 

observations into independent components ICs. The 

separation results are shown in Fig. 4. 

 
Fig. 3 Cutaneous electrode recording from a pregnant woman 

 

In order to classify the independent components ICs 
previously obtained into three multidimensional components, 

the continuous wavelet transform is applied of each ICs. The 

following figures show the wavelet coefficients on two 

dimension (time-scale). We can roughly observe three groups 

of signals: the group {IC1, IC2, IC3, IC7} (Fig. 5 (a)) have 

low frequency (60-70 Hz) which should be mainly related to 

mother’s ECG, the second group {IC5, IC8} (Fig. 5 (b)) 

contains signals with high frequency (130-180 Hz) which can 

related to foetus ECG, while the remaining group contain 

artifacts and noise signal {IC4, IC6}(Fig. 5 (c)). Not that in 

the last group, IC4 represents a respiration signal (very low 

frequency 4-10 Hz). 

 
Fig. 4  Estimates source signals obtained by JADE 

 

 

 
 

 

 
Fig. 2   ECG signals of a pregnant woman 
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(a)  mECG subspace {IC1, IC2, IC3, IC7}    

 

 

 
(b)    fECG subspace {IC5, IC8} 

 

 

 
(c) Noise subspace {IC4, IC6} 

Fig. 5 Wavelet coefficients of eight independent components from JADE 

 

Using continuous wavelet coefficients, the 

classification is not appropriately done, moreover it is quite 

difficult to distinguish among three subspaces, what’s why we 

compute the percentage of energy for each wavelet coefficient, 

which are obtained by applying a continuous wavelet 

transform for independent components ICs. 

Fig.6 shows clearly three subspaces. mECG subspace = 

{IC1, IC2, IC3, IC7}; fECG subspace = {IC5, IC8}; noise 

subspace = {IC4, IC6}. 

 

 

 

 

 
 

a) mECG Subspace {IC1, IC2, IC3, IC7} 

 

 

 

b) fECG subspace  {IC5, IC8} 

 



 
c) Noise Subspace {IC4, IC6}. 

Fig. 6   Percentage of energy of each wavelet coefficient 

 

V. CONCLUSIONS 

In this work, we propose a classification procedure based 

on continuous wavelet transform of independent components 

from maternal ECG recordings. After separating the mixed 

signals using JADE algorithm into independent components, 

we compute coefficients wavelet of each ICs, the simulation 

results show that we can divide ICs into three subspaces. 

Moreover the method is very promising by computing the 

energy of the wavelet coefficients, thus we can easily classify 

the ICs, and the results clearly show the three groups fECG, 

mECG and noise. 

In near future work, we will investigate wavelet packet 

decomposition along with MICA and other BSS technics. 
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