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ABSTRACT 
 
This paper presents a new adaptive procedure for the 
linear and non-linear separation of  signals with non-
uniform, symmetrical probability distributions, based on 
both simulated annealing (SA) and competitive learning 
(CL) methods by means of a neural network, considering 
the properties of the vectorial spaces of sources and 
mixtures, and using a multiple linearization in the mixture 
space.  Also, the paper proposes the fusion of two 
important paradigms, Genetic Algorithms and the Blind 
Separation of Sources in Nonlinear Mixtures (GABSS). 
Although the topic of BSS, by means of various 
techniques, including ICA, PCA, and neural networks, 
has been amply discussed in the literature, to date the 
possibility of using genetic algorithms has not been 
seriously explored. However, in Nonlinear Mixtures, 
optimization of the system parameters and, especially, the 
search for invertible functions is very difficult due to the 
existence of many local minima. From experimental 
results, this paper demonstrates the possible benefits 
offered by GAs in combination with BSS, such as 
robustness against local minima, the parallel search for 
various solutions, and a high degree of flexibility in the 
evaluation function.The main characteristics of the 
method are its simplicity and the rapid convergence 
experimentally validated by the separation of many kinds 
of signals, such as speech or biomedical data. 
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1. INTRODUCTION 
 
Blind Source Separation  (BSS) consists in recovering 
unobserved signals from a known set of mixtures. The 
separation of independent sources from mixed observed 
data is a fundamental and challenging signal-processing 
problem [2],[7],[14]. In many practical situations, one or 

more desired signals need to be recovered from the 
mixtures only. A typical example is speech recordings 
made in an acoustic environment in the presence of 
background noise and/or competing speakers. This 
general case is known as the Cocktail Party Effect , in 
reference to human’s brain faculty of focusing in one 
single voice and ignoring other voices/sounds, which are 
produced simultaneously with similar amplitude in a 
noisy environment. Spatial differences between the 
sources highly increase this capacity. The source 
separation problem has been successfully studied for 
linear instantaneous mixtures[1],[4],[12],[14] and more 
recently, since 1990, for linear convolutive mixtures 
[10],[17],[19].Clearly explain the nature of the problem, 
previous work, purpose, and contribution of the paper. In 
the framework of independent component analysis, ICA, 
many kinds of approaches have been presented 
concerning the blind separation of sources, with 
applications to real problems in areas such as 
communications, feature extraction, pattern recognition, 
data visualization,  speech processing and  biomedical 
signal analysis (EEG, MEG, fMRI,  etc) , considering the 
hypothesis that the medium where the sources have been 
mixed is linear, convolutive or non-linear. ICA is a linear 
transformation that seeks to minimise the mutual 
information of the transformed data, e(t), the fundamental 
assumption being that individual components of the 
source vector, x(t), are mutually independent and have, at 
most, one Gaussian distribution. The ‘Infomax’ or 
independent component analysis algorithm of Bell and 
Sejnowski [2] is an unsupervised neural network learning 
algorithm that can perform blind separation of input data 
into the linear sum of time-varying modulations of 
maximally independent component maps, providing a 
powerful method for exploratory analysis of functional 
magnetic resonance imaging (fMRI) data. Also using the 
maximization of the negentropy, ICA ‘Infomax’ 
algorithm is used for unsupervised exploratory data 
analysis and for general linear ICA applied to 
electroencephalograph (EEG) monitor output. Many 
solutions for blind separation of sources are based on 
estimating a separation matrix with algorithms, adaptive 
or not, that use higher-order statistics, including 



minimization or cancellation of independence criteria by 
means of cost functions or a set of equations, in order to 
find a separation matrix [10]. ICA is a promising tool for 
the exploratory analysis of biomedical data. In this 
context, a generalized algorithm modified by a kernel-
based density estimation procedure has been studied to 
separate EEG signals from tumour patients into spatially 
independent source signals, the algorithm allowing 
artifactual signals to be removed from the EEG by 
isolating brain-related signals into single ICA 
components. Using an adaptive geometry-dependent ICA 
algorithm, Puntonet et al. [14] demonstrated the 
possibility of separating biomedical sources, such as EEG 
signals, after analyzing only the observed mixing space, 
due to the almost symmetric probability distribution of the 
mixtures. 
The general case of a Non-linear mixture of sources is  
shown in the following figure: 
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Fig. 1. Nonlinear mixing and demixing model. 

 
2. HYBRIDATION OF CL, SA, AND GA. 
 
2.1. SIMULATED ANNEALING 
 

 
Fig. 1 shows that the mixing system is divided into two 

different phases: first a linear mixing and then, for each 
channel i, a nonlinear transfer part. The unmixing system 
is the inverse, first we need to approximate the inverse of 
the nonlinear function in each channel gi, and then unmix 
the linear mixing by applying W to the output of the gi 
nonlinear function. 
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In different approaches, the inverse function gj is 
approximated by a sigmoidal transfer function, but 
because of certain situations where the human expert does 
not give the a priori knowledge about the mixing model, a 
more flexible nonlinear transfer function based on even 
polynomial of P-th order is used: 

12

1

)( −

=
∑= k

j

P

k
jkjj xgxg  (2) 

where [ ]jPjj ggg ,...,1=  is a parameter vector to be 
determined. In this way, the output sources are calculated 
as: 
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Nevertheless, computation of the parameter vector jg is 

not easy, as it presents a problem with numerous local 
minima. Thus we require an algorithm that is capable of 
avoiding entrapment in such a minimum. As a solution to 
this first unmixing stage, we propose the hybridization of 
genetic algorithms. We have just used new meta-
heuristics, as simulated annealing and genetic algorithms 
for the linear case [5], [15], [16], but in this paper we will 
focus in a more difficult problem as is the nonlinear 
BSS.We propose an original method for independent 
component analysis and blind separation of sources that 
combines adaptive processing with a simulated annealing 
technique, and which is applied by normalizing the 
observed space, e(t), in a set of concentric p-spheres in 
order to adaptively compute the slopes corresponding to 
the independent axes of the mixture distributions by 
means of an array of symmetrically distributed  neurons 
in each dimension (Figure x). A preprocessing stage to 
normalize the observed space is followed by the 
processing or learning of the neurons, which estimate the 
high density regions in a way similar, but not identical to 
that  of self organizing maps. A simulated annealing 
method provides a fast initial movement of the weights 
towards the independent components by generating 
random values of the weights and minimizing an energy 
function, this being a way of improving the performance 
by speeding up the convergence of the algorithm. The 
main process for competitive learning when a neuron 
approaches the density region, in a sphere ñk at time t, is 
given by: 
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with á(t) being a decreasing learning rate. Note that a 
variety of suitable functions, á() and f(), can be used. In 
particular, a learning procedure that activates all the 
neurons at once is enabled by means of a factor, K(t), that 
modulates competitive learning as in self-organizing 
systems, i.e., 
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Simulated annealing is a stochastic algorithm that 
represents a fast solution to some combinatorial 
optimization problems. As an alternative to the 
competitive learning method described above, we first 
propose the use of stochastic learning, such as simulated 
annealing, in order to find a fast convergence of the 
weights around the maximum density points in the 
observation space e (t). This technique is effective if the 



chosen energy, or cost function,  Ei j , for the global 
system is appropriate. The procedure of simulated 
annealing is well known [16]. It is first necessary to 
generate random values of the weights and, secondly, to 
compute the associated energy of the system. This energy 
vanishes when the weights achieve a global minimu m, the 
method thus allowing escape from local minima. For the 
problem of blind separation of sources we define an 
energy, E, related to the four-order statistics of the 
original p sources, due to the necessary hypothesis of 
statistical independence between them, as follows: 
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where cum22 (s i (t), sj (t)) is the 2x2 fourth-order cumulant 
of si (t) and sj (t), and <x(t)> represents the expectation of 
x (t). In spite of the fact that the technique presented in 
Section 2.2 is fast, the greater accuracy achieved by 
means of the competitive learning shown in Section 2.1 
led us to consider a new approach. An alternative method 
for the adaptive computation of the Wñk matrix concerns 
the simultaneous use of the two methods, competitive 
learning and simulated annealing. Now, a proposed 
adaptive rule of the weights is the following:    
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In Figure 2, we show the first simulation, that corresponds 
to the synthetic non-linear mixture presented by Lin and  
Cowan [7], for sharply peaked distributions, the original 
sources being digital 32-bit signals. 
 

 
Figure 2. Non-linear mixture of p=2 sources. 

 
As shown in Figure 3, good estimation of the density 
distribution is obtained with 20000 samples, and using 
n=4 p-spheres (p=2). 
 

 
Figure 3. Network Estimation with SA and CL. 

2.2 GENETIC ALGORITHMS  
GAs are nowadays one of the most popular stochastic 

optimization techniques. They are inspired by the natural 
genetics and biological evolutionary process. The GA 
evaluates a population and generates a new one 
iteratively, with each successive population referred to as 
a generation. Given the current generation at iteration t, 
G(t), the GA generates a new generation, G(t+1), based 
on the previous generation, applying a set of genetic 
operations. The GA uses three basic operators to 
manipulate the genetic composition of a population: 
reproduction, crossover and mutation [5]. Reproduction 
consists in copying chromosomes according to their 
objective function (strings with higher evaluations will 
have more chances to survive). The crossover operator 
mixes the genes of two chromosomes selected in the 
phase of reproduction, in order to combine the features, 
especially the positive ones of them. Mutation is 
occasional; it produces with low probability, an alteration 
of some gene values in a chromosome (for example, in 
binary representation a 1 is changed into a 0 or vice 
versa).  

To perform the GA, first is very important to define the 
fitness function (or contrast function in BSS context). 
This fitness function is constructed having in mind that 
the output sources must be independent from their 
nonlinear mixtures. For this purpose, we must utilize a 
measure of independence between random variables. 
Here, the mutual information is chosen as the measure of 
independence. 

Evaluation functions of many forms can be used in a 
GA, subject to the minimal requirement that the function 
can map the population into a partially ordered set. As 
stated, the evaluation function is independent of the GA 
(i.e., stochastic decision rules). Unfortunately, regarding 
the separation of a nonlinear mixture, independence only 
is not sufficient to perform blind recovery of the original 
signals. Some knowledge of the moments of the sources, 
in addition to the independence, is required. A similar 
index as proposed in [16] and [18], is used for the fitness 
function that approximates mutual information: 
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Values near to zero of mutual information (8) between 

the yi  imply independence between those variables, being 
statically independent if I(y)=0. 

In the above expression, the calculation of H(y i) needs 
to approximate each marginal pdf of the output source 
vector y, which are unknown. One useful method is the 
application of the Gram-Charlier expansion, which only 
needs some moments of yi as suggested by Amari et al. 
[1] to express each marginal pdf of y as: 
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The approximation of entropy (9) is only valid for 

uncorrelated random variables, being necessary to 
preprocess the mixed signals (prewhitening) before 
estimating its mutual information. Whitening or sphering 
of a mixture of signals consists in filtering the signals so 
that their covariances are zero (uncorrelatedness), their 
means are zero, and their variances equal unity. 

The evaluation function that we compute will be the 
inverse of mutual information in (8), so that the objective 
of the GA will be maximizing the following function in 
order to increase statistical independence between 
variables: 
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There is a synergy between Genetic Algorithms and 
Natural Gradient descent. Given a combination of weights 
obtained by the genetic algorithms for the nonlinear 
functions expressed as G= [g 1, ..., gn], where the 
parameter vector that defines each function gj is expressed 
by [ ]jPjj ggg ,...,1= , it is necessary to learn the elements 
of the linear unmixing matrix W to obtain the output 
sources yj. For this task, we use the natural gradient 
descent method to derive the learning equation for W as 
proposed in [18]: 
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And o denotes the Hadamard product of two vectors. 

The typical genetic operators are crossover and mutation, 
that will be used for the manipulation of the current 
population in each iteration of the GA.  The crossover 
operator is “Simple One-point Crossover”. The mutation 
operator is “Non-Uniform Mutation” [11]. This operator 
presents the advantage when compared to the classical 
uniform mutation operator, of performing less significant 
changes to the genes of the chromosome as the number of 
generations grows. This property makes the exploration-
exploitation trade-off be more favorable to exploration in 
the early stages of the algorithm, while exploitation takes 
more importance when the solution given by the GA is 
closer to the optimal solution.  

 

3. SIMULATION RESULTS. 
 
To provide an experimental demonstration of the validity 
of GABSS, we will use a system of three sources. Two of 
the sources are sinusoidal, while the third is a random 

signal, uniformly distributed in [-1, 1] (uniform noise). 
The independent sources are: 
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These signals are first linearly mixed with a 3x3 

mixture matrix 
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0.48630.50160.6420
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The nonlinear distortion are selected as: 
 
1. f1 (x)= Tanh(x) 
2. f2(x) = Tanh(0.8x) 
3. f3(x) = Tanh(0.5x) 

 

 
Fig. 4. Original signals  

 
The goal of the simulation was to analyse the behaviour 

of the GA and observe whether the fitness function thus 
achieved is optimised; with this aim, therefore, we studied 
the mixing matrix obtained by the algorithm and the 
inverse function. When the number of generations 
reached a maximum value, the best individual from the 
population was selected and the estimated signals u were 
extracted, using the mixing matrix W, and the inverse 
function. 

 Figure 4 represents the 1000 samples from the original 
signals. 

 Figure 5 represents the mixed signals. 
 



 
Fig. 5. Mixed signals  

 
 Figure 6 shows the separated signals obtained with the 

proposed algorithm. As it can be seen signals are very 
similar to the original ones, up to possible scaling factors 
and permutations of the sources. 

 

 
Fig. 6. Obtained signals  

 
 

Figure 7 compares the approximation of  the functions 
gi to the inverse of fi. 

Figure  8 shows the joint representation of the original, 
mixed and obtained signals. 
 

 
Fig. 7. Comparison of the unknown fi

-1 and its 
approximation by g i. 

 

 
Fig. 8. Representation of the joint distribution of the 
original (S), mixed (X), and obtained (Y) signals. 

In this practical application, the population size was 
population size= 20 and the number of generations was 
generationnumber = 40. Regarding genetic operators 
parameters, crossover probability per chromosome was 
pc= 0.8 and mutation probability per gene was pm= 0.01. 
As an special parameter for the non-uniform mutation 
operator b=5.   

 
 
4. CONCLUSION 
 
We have shown a new, powerful adaptive-geometric 
method based on competitive unsupervised learning and 
simulated annealing, which finds the distribution axes of 
the observed signals or independent components by 
means of a piecewise linearization in the mixture space, 
the use of simulated annealing in the optimization of a 
four-order statistical criterion being an experimental 
advance. The algorithm, in its current form, presents some 
drawbacks  concerning the application of simulated 
annealing to a high number, p, of signals, and the 
complexity of the procedure O(2p p2 n) for the separation 



of nonlinear mixtures, that also depends on the number, n,  
of p-spheres. In spite of these questions that remain open, 
the time convergence of the network is fast, even for more 
than two subgaussian or supergaussian signals, mainly 
due to the initial simulated annealing process that 
provides a good starting point with a low computation 
cost, and the accuracy of the network is adequate for the 
separation task, the competitive learning being very 
precise, as several experiments have corroborated. 
Besides the study of noise, future work will concern the 
application of this method to independent component 
analysis with linear and nonlinear mixtures of biomedical 
signals, such as in Electroencephalograph and functional 
Magnetic Resonance Imaging, where the number of 
signals increases sharply, making simulated annealing 
suitable in a quantized high-dimensional space. 

Many different approaches to the blind separation of 
sources problem have been adopted by numerous 
researchers, using neural networks, artificial learning, 
higher order statistics, minimum mutual information, 
beam forming and adaptive noise cancellation, with 
various degrees of success being claimed. Despite the 
diversity of the approaches, the fundamental idea of the 
source signals being statistically independent remains the 
single most important assumption in most of these 
schemes. The neural network approach has the drawback 
that it may be trapped into local minima and therefore it 
does not always guarantee optimal system performance.  
This article discusses, also, a satisfactory application of 
genetic algorithms to the complex problem of the blind 
separation of sources. It is widely believed that the 
specific potential of genetic or evolutionary algorithms 
originates from their parallel search by means of entire 
populations. In particular, the ability of escaping from 
local optima is an ability very unlikely to be observed in 
steepest-descent methods. Although to date, and to the 
best of the authors' knowledge, there is no mention in the 
literature of this synergy between GAs and BSS in 
nonlinear mixtures, the article shows how GAs provide a 
tool that is perfectly valid as an approach to this problem.  
 
5. ACKNOWLEDGEMENT 
 
This work has been partially supported by the CICYT 
Spanish Project TIC2000-1348 and TIC2001-2845. 
 
REFERENCES 
 
[1] S-I. Amari, A.Cichocki, H.Yang, “A New Learning 

Algorithm for Blind Signal Separation”, In 
Advances in Neural Information Processing 
Systems, vol.8, 1996. 

[2] A. Bell & T.J. Sejnowski: An Information-
Maximization Approach to Blind Separation and 
Blind Deconvolution. Neural Computation 1129-59 
(1995). 

[3] G.Burel, “Blind separation of sources: A nonlinear 
neural algorithm”, Neural Networks, vol.5 , pp.937-
947, 1992. 

[4] J.F.Cardoso, “Source separation using higher order 
moments”, in Proc. ICASSP, Glasgow, U.K. May 
1989, pp.2109-2212. 

[5] D.E. Goldberg, ”Genetic Algorithms in Search, 
Optimization and Machine Learning”,Addison-
Wesley, Reading, MA, 1989. 

[6] Hyvärinen, J. Karhunen y E.Oja, Independent 
Component Analysis.  J. Wiley-Interscience. 2001. 

[7] A.Hyvärinen and E.Oja, A fast fixed-point 
algorithm for independent component analysis. 
Neural Computation, 9  (7), pp.1483-1492, 1997. 

[8] T-W.Lee, B.Koehler, R.Orglmeis ter, “Blind 
separation of nonlinear mixing models”, In IEEE 
NNSP, pp.406-415, Florida, USA, 1997. 

[9] J.K.Lin, D.G.Grier, J.D.Cowan, “Source separation 
and density estimation by faithful equivariant 
SOM”, in Advances in Neural Information 
Processing Systems. Cambridge, MA: MIT Press, 
1997, vol.9. 

[10] A.Mansour, C.Jutten, P.Loubaton, “Subspace 
method for blind separation of sources in 
convolutive mixtures”, in Proc. EUSIPCO, Trieste, 
Italy, Sept.1996, pp.2081-2084. 

[11] Z. Michalewicz, Genetic Algorithms + Data 
Structures = Evolution Programs, Springer-Verlag, 
New York USA, Third Edition, 1999. 

[12] A.V. Oppenheim, E. Weinstein, K.C. Zangi, M. 
Feder, and D. Gauger. Single-sensor active noise 
cancellation. IEEE Trans. on speech and audio 
processing, 2(2):285-290, April 1994. 

[13] P.Pajunen, A.Hyvarinen, J.Karhunen, “Nonlinear 
blind source separation by self-organizing maps”, in 
Progress in Neural Information Processing: Proc. 
IONIP’96, vol.2. New York, 1996, pp.1207-1210. 

[14] C.G.Puntonet, A.Prieto, "Neural net approach for 
blind separation of sources based on geometric 
properties", Neurocomputing, 18 (3), 1998, pp.141-
164. 

[15] A.Taleb, C.Jutten, “Source Separation in Post-
Nonlinear Mixtures”, IEEE Transactions on Signal 
Processing, vol.47m no.10, pp.2807-2820 1999. 

[16] Y.Tan, J.Wang, J.M.Zurada, “Nonlinear Blind 
Source Separation Using a Radial Basis Function 
Network”, IEEE Trans. On Neural Networks, 
vol.12, no.1, pp.124-134, 2001. 

[17] H.L.N.Thi, C.Jutten, “Blind sources separation for 
convolutive mixtures”, Signal Process., vol.45, 
pp.209-229, 1995. 

[18] H.H.Yang, S.Amari, A.Chichocki, “Information-
theoretic approach to blind separation of sources in 
non-linear mixture”,  Signal Processing, vol.64, 
1998, 291-300. 

[19] D.Yellin, E.Weinstein, “Multichannel signal 
separation: Methods and analysis”, IEEE Trans. 
Signal Processing, vol.44, pp.106-118, Jan. 1996. 

 
 
 


