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Abstract

The formation of groups is of essential impor-

tance in biology. Aggregation is based on a sim-

ple dynamical model for the motion of each indi-

vidual. It is shown that a swarm is formed within

a short time span and is stable under perturba-

tions.

Keywords: Grouping behavior, stochastic con-

trol.

1 Introduction

Following the work by E. Haeckel, multi-

cellular organisms had evolved from volvox-like

colonies of unicellular, autonomously acting or-

ganisms. The aggregation of Dictyostelium

cells to highly organized colonies is one of the

best studied examples for this kind of self-

organization in ensembles of interacting indi-

viduals. Aggregation may be induced by envi-

ronmental changes. Under gentle environmen-

tal conditions, Dictyostelium cells live alone,

while if, for example, nutrance becomes rare, 3-

dimensional colonies are constituted, exhibiting

a high degree of functional organization up to dif-

ferentiation [?]. Higher organisms show grouping

behavior as well: Particular tasks like hunting or

defense against enemies may not be achievable

by single individuals, but may be realizable by

cooperation of many. In general, one may claim

that the maintenance of the group, not neces-

sarily the maintenance of single individuals, may

be regarded as the most fundamental function

of social behavior. As such the establishment of

groups is of vital importance.

The formation of colonies has to be su�ciently

fast and must be stable with respect to exter-

nal disturbances. These particular features will

be more closely studied in the following. The

aim of this work is not to mimicke any particu-

lar biological phenomena, rather than to discuss

these features from a principal point of view. To

make this point clear, we call the objects un-

der consideration agents. Our model of an agent

is based on biological considerations [?] about

simple organisms such as protozoa, bacteria, up

to insects. We believe that the same functional

architecture is analogously realized in higher or-

ganisms as well.

2 Restricted random walk

Motion patterns of simple organisms are com-

monly regarded as generated by random mech-

anisms. Accordingly, we base our model on a

"random walk"-like mapping

x 7! '(x); x 2 X; (1)

where x 2 X is the agent's position in some space

X , and ' is a randommapping onX . We assume
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that the agent at each time approximately main-

tains its former direction, i.e.

0 �
hx; '(x)i

kxk k'(x)k
� 1� �;

where 0 � � � 1 may be interpreted as the

"exibility" of the agent. Obviously, if � = 0,

then the motion of the agent is deterministic.

Equivalently, we assume that the determinant of

the linearized mapping associated with ' is non-

negative. If it is zero, the agent is stationary.

The motion due to (1) is a (restricted) random

walk having trajectories of bounded mean curva-

ture, determined by �.

If the motion of an agent would be due to a

random walk, the mean time needed to reach a

given target would be a quadratic function of the

agent's initial distance from that point. Hence,

it would take a quite long time to reach a point

from a far distance. Moreover, as also known

from the Theory of Di�usion Processes [?], the

agent will come close to any given point only if X

does not have a dimension larger than 2. In three

dimensions it will not. Consequently purely dif-

fusive motion does not provide a reliable strategy

to su�ciently quickly form groups.

3 Weighted random Walk

The above elementary model can be extended

as follows. As already stated in the basic model

the determinant of the motion generating map-

ping is non-negative. The only extension consists

in multiplying ' with a weight taking values in

the set of real numbers. This weight depends on

the actual motion of the agent, i.e. as a function,

the weight depends on the agent's actual posi-

tion and its position before. For details about

the model and in particular about the de�nition

of the weight function, see [?]. The motion is

generated by the following mapping de�ned on

X �X having its range in X

(x; x0) 7�! 'c(x;x0)(x); (2)

where x0 is the precursor of x. As such the deter-

minant of the linearized mapping Lc correspond-

ing to 'c can be either +1 or �1 depending on

the value of c(x; x0). Accordingly, the agent ei-

ther continues or reverses its former direction.

This simple extension leads to fundamentally

new motion features: Firstly, it can be shown [?]

that the agent will reach a given point almost

surely in all dimensions, in particular in those

larger than 2. Secondly, its mean arrival time

is only a linear function of its initial distance.

Consequently, reaching a giving point happens

much faster than in a purely di�usive setting.

In summary, motion due to a weighted random

walk as de�ned above provides reliable and fast

target-reaching behavior.

4 Following behavior

The �rst step in analyzing group behavior is

to consider only two agents. As our scenario

we consider a "prey" moving along some given

path, while it is hunted by a "predator". We as-

sume that the motion of the prey is deterministic,

while that of the predator is due to a weighted

random walk. The question is: Will the preda-

tor reach its prey? The answer, roughly speak-

ing is "Yes", if the predators speed is not too

low compared with that of its prey. A second

setting is that the prey moves completely ran-

domly with some mean escape time. Again, the

predator will reach the prey if its relative veloc-

ity is high enough. This stable reaching behavior

is due to the stability of the dynamics generated

by a weighted random walk, as de�ned above.
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Figure 1: One robot moving along a nearly

straight line (deterministic), while a second one

follows it by our algorithm.

5 Grouping behavior

The generalization to an ensemble of n inter-

acting agents is straight forward. For simplic-

ity we may assume that interaction is distance-

dependent, such as in interactions mediated by

light, sound, or based on di�using chemicals. As

such, the motion of a single agent depends on the

motions of all other agents in the group. Again

we avoid to de�ne the corresponding mapping

generating the motion of an agent in a group of

signalling agents in detail; however the motion is

a function �c : X
2 n

! X
n de�ned by

(x;x0) 7�! �
c(x;x0) (x); (3)

where ci(xi;x
0) is the weight of the i-th agent

depending on the motion of all other agents in

the group. As above, x0 is the precursor of x. It

can be shown that under fairly mild assumptions

this mapping has a stable �xed point in Xn. This

point corresponds to a stable con�guration of the

agents. If all agents are identical, the asymptotic

con�guration is a �nite "cloud".

The time needed for establishing such a cloud

also is a linear function of the initial distances

(see [?]). Hence the formation of such groups can

happen quite quickly. Because of stability, this

cloud will be maintained under perturbances. In

particular, if one agent moves along a given line

without respect to inuences by other agents, the

ensemble will follow it. This can be regarded as

elementary swarming behavior.
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Figure 2: One robot moving along a nearly

straight line (deterministic), while the rest (the

cloud) follows it.
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6 Summary

In this paper we have considered an elemen-

tary extension of a model generating random-

like motion in space. It was shown that target-

reaching was reliably achieved within a time-

span, being less than that expected in purely ran-

dom systems. As a consequence, stable following

behavior was obtained, as well as the formation

of groups of interacting agents. The computa-

tional e�ort needed is minimal and, hence, the

performance is fast. Models based on "weighted

random walks" may provide both, a general

framework for modeling basic motion features of

simple organisms, as well as a methodology to

reliably control simple robot systems.
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